
Microprocessors & Microcontrollers

Second Year
Electrical Engineering Department

College of Engineering
Basrah University

2024-2025

3: Stack and Interrupts of 8086

Stack of 8086

• The stack is a block of memory that may be used for temporarily storing the contents of registers inside

CPU.

• Stack is accessed by using SP and SS.

• Stack is a Top Down Data Structure whose elements are accessed by using a pointer (SP,SS).

• The stack is required when CALL instruction is used.

• Push

• Pop

• Top of stack

• Stack pointer

• LIFO

• The Stack is a portion of memory which, like a stack of plates in a canteen, is organized on a Last-In-

First-Out basis.

• Thus the item which was put last on the stack is the first to be withdrawn

2

The Stack Pointer

3

• The Stack pointer keeps track of
the position of the last item
placed on the stack (i.e. the Top of
Stack)

• The Stack is organized in words,
(i.e. two bytes at a time). Thus
the stack pointer is incremented
or decremented by 2.

• The Stack Pointer points to the
last occupied locations on the
stack

Stack instructions

4

Flags: Only affected by the popf instruction
Addressing mode: src and dst should be words and cannot be
immediate. dst cannot be the IP or CS register

PUSH & POP

• The two set of instructions which
explicitly modify the stack are the
PUSH (which places items on the
stack) and the POP (which
retrieves items from the stack).

• In both cases, the stack pointer is
adjusted accordingly to point
always to the top of stack.

• Thus PUSH AX means SP=SP-2 and
AX -> [SP]

• POP AX means [SP] -> AX and
SP=SP+2.

5

6

• Using the stack, swap the values of the ax and bx registers, so that ax now
contains what bx contained and bx contains what ax contained. (This is not
the most efficient way to exchange the contents of two variables). To carry out
this operation, we need at least one temporary variable:

ORG 100h

mov ax, 123h

mov bx, 212h

push ax ; Store ax on stack

push bx ; Store bx on stack

pop ax ; Copy last value on stack to ax

pop bx ; Copy first value to bx

push ax

mov ax, bx

pop bx

ret

7

H.W

1) What errors are present in the following

• mov ax 5e

• mov 42, ax

• mov bx, ch

• move ax, 1h

• add 2, cx

• add 3, 6

• inc bx, 2

2) Write instructions to
evaluate the arithmetic
expression 6 +(8-2) leaving the
result in ax using

(a) 1 register, (b) 2 registers (c)
3 registers

8

Interrupts of 8086

• An interrupt is either a hardware generated call (externally derived
from a hardware signal) or software generated CALL (internally
derived from the execution of an instruction or by some other
internal event)

• When an interrupt occurs, the CPU is interrupted

• The CPU attends to the interrupt and then carries on where it left off

9

Interrupts 12

Types of Interrupts

• Hardware

• an external signal is applied to the NMI input pin or the INTR input pin

• NMI - non-maskable interrupt

• INTR – interrupt used to deal with I/O devices that need attention

• Software

• Occurs when INT instruction is executed

• When some error condition is produced by the execution of an
instruction such as divide by zero

10

Interrupt handling in 8086
• When an interrupt is requested…

• the CPU finishes executing current
instruction

• pushes flag register onto stack

• disables the INTR input by clearing the
IF (interrupt flag) in the flag register

• clears the TF (trap flag) in the flag register

• pushes the current CS contents onto the
stack

• pushes the current IP contents onto the
stack

• does an indirect far jump to the start of
the ISR (Interrupt Service Routine)

11

Interrupt Handling (cont.)

• Processor executes Interrupt Service Routine (ISR) like a normal
procedure

• Only difference is normal procedures use RET at the end of a procedure,
ISRs use an IRET instruction instead of RET

• This pops IP, CS, and the Flag registers

• ISRs can be interrupted!

12

Interrupt vector table

• In 8086, 1st 1k bytes of memory 00000-003ffh is set aside as a table
for storing the starting addresses of interrupt service
procedures(routines)

• Since 4 bytes are required to store the CS & IP values for each
interrupt service procedure, the table can hold the starting addresses
of up to 256 interrupts

• The starting address of an interrupt service procedure is called
interrupt vector or interrupt pointer and the table is referred to as
interrupt vector table or the interrupt pointer table

• Each double word interrupt vector is identified by a number from 0 to
255.

• Intel calls this number, the type of interrupt
13

Interrupt vector table contd..

14

• The lowest 5 interrupts are dedicated to specific (or dedicated)
interrupts such as divide by 0, single step, NMI, interrupt caused by
an instruction and overflow interrupt.

• Interrupts from 5-31 are reserved by Intel for more complex
processors

• The upper 224 interrupts from type 32 to type 255 are available for
users to use for hardware or software interrupts

• The vector for each interrupt requires 4 memory locations.

• Therefore, when the 8086 responds to a particular type of interrupt,
it automatically multiplies the type by 4 to produce the desired
address in the table to get the starting address of the Interrupt
Service Procedure (ISP)

15

Interrupt sources

• An 8086 interrupt can come from any one of the 3 sources

1. External signal to NMI or INTR input pin. An interrupt caused by a
signal applied to one of these inputs is referred to as hardware
interrupt

2. Execution of interrupt instruction INT. This is referred to as software
interrupt

3. An interrupt caused by some error condition in 8086 by the
execution of an instruction

Ex: Divide by 0. If an attempt is made to divide an operand by 0, 8086
automatically interrupts the current executing program

16

Actions taken by 8086 when an interrupt occurs
• At the end of each instruction cycle, 8086 checks to see if any

interrupts have been requested. If an interrupt has been requested,
8086 responds to the interrupt by stepping through the following
series of major actions.

• It decrements IP by 2 and pushes the flag register on the stack

• disables INTR interrupt by clearing interrupt flag in the flag register

• It resets Trap flag in the flag register

• It decrements SP by 2 and pushes the current CS register on the stack

• It decrements SP again by 2 and pushes the current IP contents on
the stack

• It does an indirect far jump to the start of the procedure that is
written to respond to the interrupt

17

H.W: Write a report about the specific (or
dedicated) interrupts (interrupts 0-4), with
examples.

18

Interrupt cycle of 8086

• Broadly, there are two types of interrupts
• The first out of them is external interrupt and the second is internal

interrupt.
• In external interrupt, an external device or a signal interrupts the

processor from outside. i.e. the interrupt is generated outside the
processor. For ex: a keyboard interrupt

• The internal interrupt on the other hand is generated internally by the
processor circuit or by the execution of interrupt instruction. The
examples of this type are divide by 0, overflow interrupt and interrupts
due to INT instructions

19

Interrupt cycle of 8086 contd..

20

Interrupt cycle of 8086 contd..
• The responses to the NMI, TRAP or Divide by zero interrupt requests are

independent of the IF flag.

• After an interrupt is acknowledged, the CPU computes the vector address from the type of
the interrupt and the processor executes the ISR of the corresponding interrupt.

• If further interrupts are to be responded during the time of the first interrupt is
being serviced, the IF should be set by the ISR of the first interrupt

• If the interrupt flag IF is not set, the subsequent interrupt signals will not be
acknowledged by the processor, till the current one is completed

• The programmable interrupt controller is used for managing such multiple
interrupts based on their priorities.

• At the end of ISR, the last instruction should be IRET

• When the CPU executed IRET, the contents of flags, IP and CS which were saved before
the execution of ISR are now retrieved to the respective registers.

• The execution continues onwards from this address received by IP and CS 21

Interrupt Response Sequence and structure of
interrupt vector table

22

Interrupt Response Sequence contd..

23

NMI (non-maskable) interrupt
• NMI interrupt has the highest priority among the external interrupts
• TRAP (Single Step-Type1) is an internal interrupt having the lowest priority
• The NMI is activated on a positive transition (low to high).
• The assertion of the NMI interrupt is equivalent to an execution of

instruction INT 02. I.e. Type 2 interrupt
• However, if an internal interrupt is being serviced and an NMI (or INTR if IF

is set) occurs, the ISR for the internal interrupt will be suspended and the
external interrupt is honored, even though it is of lower priority.

• The priority structure applies only to simultaneous interrupt requests.

24

NMI interrupt contd..

• When the NMI is activated, the current instruction being executed is

completed and then the NMI is served

• In case of string manipulation instructions, this interrupt will be

served only after the complete string has been manipulated

• Another high going edge on the NMI pin, during the period in which

the first NMI is served , triggers another response

• The signal on the NMI pin must be free of logical bounces to avoid

erratic NMI responses

25

NMI interrupt contd..
• NMI is a nonmaskable interrupt, which means that it cannot be blocked.
• INTR, on the other hand, is maskable via the IF flag.
• Only when this flag is set, interrupt on this input will be accepted.
• Although internal interrupts have priority over external interrupts, the

NMI request will be honored as soon as the internal interrupt’s ISR begins
The same is not true for the INTR input.

• Because the NMI input is nonmaskable, care must be taken when using
this interrupt. This is because there may be some programs that you
do not want interrupted—reading or writing data to a disk drive, for
example.

• For this reason, the NMI input is normally reserved for catastrophic
events such as memory error or an impending power failure.

26

Example

• A particular interrupt has a type number n = 41H. If the ISR begins at
address 09E3:0010H, determine the locations in the vector table to
store this address.

• Solution: The vector address is calculated by multiplying 41H by 4.
This is done most easily by rotating 41H left twice. 41H = 01000001;
rotate left twice --> 10000100 = 104H or 00104H. IP is stored in the
low word location and CS in the high word location.

• 00107H: 09H

• 00106H: E3H

• 00105H: 00H

• 00104H: 10H

27

Interrupts
MS-DOS Function Calls (INT 21h)

• MS-DOS provides a lot of functions for displaying and reading the
text on the console (200 functions). The general syntax for calling
the functions is :

MOV AH, function_number ; input parameters
INT 21h ; return values

28

29

INT 21h / AH=4Ch: Terminate Process Ends the current process (program), returns an optional 8-bit return

code to the calling process. A return code of 0 usually indicates successful completion.

mov ah, 4Ch ; terminate process

mov al, 0 ; return code

int 21h

INT 21h / AH=02h : Write Character to Standard Output :

mov ah, 02h

mov dl, ’A’

int 21h

INT 21h / AH=01h: Read character from standard input, with echo, result is stored in AL.
mov ah, 01h
int 21h

INT 21h / AH=09 : Write a string at DS:DX to Standard Output . String must be terminated by '$'.:

mov dx, offset msg

mov ah, 09

int 21h

ret

msg db “Hello world $”

30

STSEG SEGMENT

 DB 64 DUP (?)

STSEG ENDS

;---

DTSEG SEGMENT

 DATA1 DB 52H

 DATA2 DB 29H

 SUM DB ?

DTSEG ENDS

;---

CDSEG SEGMENT

MAIN PROC FAR ;This is the program entry point

 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG

 MOV AX,DTSEG ;load the data segment address

 MOV DS, AX ;assign value to DS

 MOV AL, DATA1 ;get the first operand

 MOV BL, DATA2 ;get the second operand

 ADD AL, BL ;add the operands

 MOV SUM, AL ;store result in location SUM

 MOV AH, 4CH ;set up to

 INT 21H ;return to the Operating System (DOS)

MAIN ENDP

CDSEG ENDS

 END MAIN ;this is the program exit point

A Sample Assembly Language

Program using FULL

SEGMENT DEFINITION

STSEG SEGMENT

 DB 64 DUP (?)

STSEG ENDS

;---

DTSEG SEGMENT

 STR 10 DUP('$')

DTSEG ENDS

;---

CDSEG SEGMENT

MAIN PROC FAR ;This is the program

entry point

 ASSUME CS:CDSEG, DS:DTSEG,

SS:STSEG

 MOV AX,DTSEG ;load the data segment

address

 MOV DS, AX ;assign value to DS

L2: MOV AH, 01H

 INT 21H

 CMP AL, 'q'

 JE L1

 JMP L2

 L1: MOV STR, AL

 MOV AH, 09H

 MOV DX, OFFSET STR

 INT 21H

 MOV AH, 4CH ;set up to

 INT 21H ;return to the Operating System (DOS)

MAIN ENDP

CDSEG ENDS

 END MAIN ;this is the program exit point

Program to input characters

until ‘q’ and display

31

	Slide 1: Microprocessors & Microcontrollers
	Slide 2: Stack of 8086
	Slide 3: The Stack Pointer
	Slide 4: Stack instructions
	Slide 5: PUSH & POP
	Slide 6
	Slide 7
	Slide 8: H.W
	Slide 9: Interrupts of 8086
	Slide 10: Types of Interrupts
	Slide 11: Interrupt handling in 8086
	Slide 12: Interrupt Handling (cont.)
	Slide 13: Interrupt vector table
	Slide 14: Interrupt vector table contd..
	Slide 15
	Slide 16: Interrupt sources
	Slide 17: Actions taken by 8086 when an interrupt occurs
	Slide 18: H.W: Write a report about the specific (or dedicated) interrupts (interrupts 0-4), with examples.
	Slide 19: Interrupt cycle of 8086
	Slide 20: Interrupt cycle of 8086 contd..
	Slide 21: Interrupt cycle of 8086 contd..
	Slide 22: Interrupt Response Sequence and structure of interrupt vector table
	Slide 23: Interrupt Response Sequence contd..
	Slide 24: NMI (non-maskable) interrupt
	Slide 25: NMI interrupt contd..
	Slide 26: NMI interrupt contd..
	Slide 27: Example
	Slide 28: Interrupts MS-DOS Function Calls (INT 21h)
	Slide 29
	Slide 30
	Slide 31

